Nocathiacins, New Thiazolyl Peptide Antibiotics from *Nocardia* sp.

II. Isolation, Characterization, and Structure Determination

JOHN E. LEET*, WENYING LI, HELEN A. AX, JAMES A. MATSON, STELLA HUANG, RON HUANG, JOSEPH L. CANTONE, DIETER DREXLER, RICHARD A. DALTERIO and KIN S. LAM

> Bristol-Myers Squibb Pharmaceutical Research Institute, 5 Research Parkway, Wallingford, Connecticut 06492 U.S.A.

> > (Received for publication October 8, 2002)

A new group of thiazolyl peptide antibiotics, the nocathiacins, was isolated from cultured broth of *Nocardia* sp. The major analogs nocathiacins I~III (1~3) were purified using silica gel and Sephadex LH-20 chromatography techniques. The structures of nocathiacins I~III were determined by spectroscopic (2D-NMR, MSⁿ) methods, and share structural similarities to glycothiohexide- α (4).

In the course of screening for novel antibiotics in microbial fermentations, a strain of *Nocardia* sp. (ATCC 202099) was selected for further evaluation. This investigation led to the discovery of the nocathiacins, a new group of thiazolyl peptide antibiotics¹). The nocathiacins were isolated from cultured broth of *Nocardia* sp. and are highly potent against Gram-positive bacteria *in vitro* as well as *in vivo*. In the preceding paper², we reported the taxonomy of the producing strain, fermentation, and biological activities of nocathiacins I~III. This paper describes the isolation, characterization, and structure determination of nocathiacins I~III.

Results

Isolation of Nocathiacins I~III

The initial discovery of the nocathiacin antibiotics was facilitated by the use of *Enterococcus faecium* as the test organism in an antibacterial screen^{1,2)}. The following procedures were used for the preparative scale isolation of nocathiacins $I \sim III$.

Nocathiacin I (1)

A crude ethyl acetate extract (137 g) derived from a 1950-liter fermentation³⁾ was subjected to silica gel vacuum

liquid chromatography (VLC). The extract was preadsorbed onto 75 g of silica gel 60 ($63 \sim 200 \,\mu m$, EM Separations) and applied to a 14×17 cm fritted filter funnel packed with 500 g of LiChroprep silica gel 60 ($25 \sim 40 \,\mu m$; EM Separations). Elution using house vacuum was carried out with hexane - chloroform 1:1 (2 liters), chloroform (2 liters), followed by chloroform with increasing percentages of methanol - water 10:1 (i.e. chloroform - methanol - water 99:1:0.1 (2 liters), 98:2:0.2 (6 liters), 97:3:0.3 (4 liters), 95:5:0.5 (6 liters), 93:7:0.7 (2 liters) and 90:10:1 (4 liters). The chromatography was monitored by silica gel TLC (chloroform-methanol-water 90:10:1; long wavelength UV and/or ceric sulfate spray for detection) and/or C18 HPLC. The nocathiacin I-enriched chloroform - methanol - water 95:5:0.5 fraction (27.2 g) was further purified in 10 g batches using Sephadex LH-20 chromatography (400 g, 5×100 cm column, chloroformmethanol 10:4 eluant), affording nocathiacin I (1), 16.5 g.

Nocathiacin II (2)

A crude chloroform-methanol 1:1 extract (39.3 g) derived from 4 kg (wet) cell mass recovered from a 475-liter fermentation³⁾ was subjected to silica gel VLC. The residue was preadsorbed onto 20 g of Merck LiChroprep silica gel 60 (25~40 μ m) and applied to a 7×14 cm fritted filter funnel packed with 107 g of silica gel. Elution using

^{*} Corresponding author: leetj@bms.com

VOL. 56 NO. 3

house vacuum was carried out with hexane (500 ml), followed by hexane - chloroform 3:1, 1:1, chloroform, and chloroform with increasing percentages of methanol - water 10:1(*i.e*. chloroform - methanol - water 99:1:0.1, 98:2:0.2 (4 times), 97:3:0.3, 95:5:0.5, 90:10:1, 80:20:2 (500 ml each). Immediately following elution of nocathiacin I (1.2g) with chloroform - methanol - water 98:2:0.2 and 97:3:0.3, nocathiacin II was eluted with chloroform - methanol - water 95:5:0.5 and 90:10:1. Key to the removal of non-related polar impurities was a second, silica gel VLC step using a chloroform-methanol-acetic acid step gradient. In this manner, the nocathiacin II was retained on the silica gel upon elution with chloroform, chloroform - acetic acid 99:1, chloroform - methanol acetic acid 95:5:1 and 90:10:1. Following removal of the major impurities, the nocathiacin II (0.9 g) was recovered from the silica gel with chloroform - methanol - ammonium hydroxide 90:10:1. A final silica gel VLC step using a chloroform - methanol - water step gradient as previously described was used to afford nocathiacin II (2, 200 mg).

Nocathiacin III (3)

The ethyl acetate extract (8.6 g) derived from a 40-liter fermentation²⁾ was initially subjected to silica gel VLC using a chloroform-methanol-water step gradient as previously described. The chloroform - methanol - water 95:5:0.5 fraction containing both nocathiacins I (1) and III (3) (3.5 g) was further subjected to silica gel column chromatography using a chloroform - methanol - acetic acid linear gradient. This method exploits the basic amino sugar present in 1. The addition of acetic acid to the chromatographic eluant markedly increases the polarity of 1 relative to 3 on silica gel, presumably through protonation of the N,N-dimethylamino group. The aglycone is unaffected by the addition of acetic acid and readily elutes from the column. Accordingly, elution was begun with chloroform - acetic acid 99:1 with a linear gradient (2 liters total run) to chloroform - methanol - acetic acid 95:5:1. A total of twenty 100-ml fractions were collected. Fractions $12 \sim 15$ contained the aglycone (3, 720 mg) and were pooled. A final purification step using Sephadex LH-20 (chloroform-methanol 10:4 eluant) afforded nocathiacin III (3, 490 mg). The nocathiacin I (1, 1.7 g) was recovered from the silica gel upon elution with chloroformmethanol - ammonium hydroxide 90:10:1.

Characterization and Structure Determination

Nocathiacin I (1)

The major component of the nocathiacin antibiotic complex was isolated as a yellow amorphous solid. It is soluble in DMSO and chloroform-methanol mixtures, poorly soluble in chloroform, ethyl acetate, acetonitrile, methanol, and practically insoluble in water. The measured mass of 1 as determined by HR-ESIMS $([M+H]^+ \text{ at } m/z)$ 1437.2850) was consistent with the formula $C_{61}H_{60}N_{14}O_{18}S_5$. Further confirmation was provided by elemental analysis. The above formula requires 39 degrees of unsaturation in the molecule. The UV spectrum revealed characteristic absorption maxima: λ_{max} (MeOH) 222, 290, 364 nm (log ε 4.89, 4.52, 4.17). In addition, the compound in solution and on a TLC plate exhibited intense yellowgreen fluorescence under long wavelength UV light, indicative of a highly conjugated chromophore. The IR spectrum showed strong amide carbonyl absorptions (1693, 1670, 1640 cm^{-1}) and weak ester absorptions (1740, 1721 cm⁻¹), consistent with a depsipeptide structure. Noteworthy resonances in the ¹H NMR spectrum were 3 methyl signals (δ 0.55, 1.13, 1.40), one vinyl methyl (δ 1.96), an *N*,*N*-dimethylamino group (δ 2.49) and an O-methyl group (δ 3.87). Also present were 6 nonexchangeable downfield (i.e. aromatic) one-proton singlets $(\delta$ 7.84, 7.87, 8.23, 8.49, 8.52, 8.61), and an *exo* methylene pair of singlets (δ 5.72, 6.34). The ¹³C NMR spectrum revealed 60 carbon signals, of which there were 31 quaternary, 18 methine, 5 methylene and 6 methyl resonances. Of the 31 observed quaternary resonances, 27 were in the δ 126~172 range, again suggesting a peptide with a high degree of aromatic character. There were two groups of methine resonances [δ 112~128 (9); δ 49~80 (8)], one anomeric carbon (δ 95.1), and 4 methylene carbon signals (δ 40~68). There was one *exo* methylene carbon (δ 103.7), one O-methyl (δ 56.2), one N,N-dimethylamino carbon signal (δ 44.4, 2 carbons), and 4 C-methyl signals $(\delta 13.1, 17.9, 18.0, 30.6)$. Collectively, the molecular formula, UV, IR and NMR spectral data revealed that the nocathiacins are in the thiazolyl peptide class (i.e. nosiheptide group) of antibiotics $^{4,5)}$. In particular, there is significant overlap between the NMR spectra of nocathiacin I and published data for glycothiohexide- α (4) a previously reported nosiheptide-like thiazolyl peptide^{6 - 8}.

The ¹³C and ¹H NMR chemical shift assignments for nocathiacin I (1) were based on 2D NMR (COSY, HMQC and HMBC data; Table 1). The ¹⁵N chemical shift assignments for 1 were based on ¹H-¹⁵N HMQC and

Fig. 1.

Nocathiacin III (3) R^1 =OH, R^2 = OH

HMBC data, and were in agreement with published ¹⁵N NMR data for nosiheptide⁹⁾ and sulfomycin-I¹⁰⁾. Common structural elements in 1 and 4 include (in counter clockwise order): a 2,5,6-trithiazolyl-3-hydroxypyridine moiety, a threonine, (*E*)-dehydrothreonine (Dht) residue, thiazole [Thz(2)], a 3,4-dioxyglutamic acid (Glu) residue, an *N*,*N*-dimethylamino sugar moiety, an indole-2-carbonyl moiety, an aminoethyl residue, and an additional thiazole [Thz(3)] linked back to the Glu residue, completing the tricyclic

peptide motif. Nocathiacin I (1) is thus a close structural analog of glycothiohexide- α (4), with the following significant differences.

Dehydroalanine Side Chain

A dehydroalanine side chain moiety, also found in nosiheptide^{5,9)}, was indicated by a geminal pair of an *exo* methylene moiety ($\delta_{\rm H}$ 5.72, 6.34; $\delta_{\rm C}$ 103.7). These protons

Table 1. Nocathiacin I (1): NMR data (500 MHz, $DMSO-d_6$).

Position	¹³ C ppm	¹ H ppm (mult, <i>J</i> (Hz))	¹⁵ N ppm	HMBC (¹³ C - ¹ H correlations)	HMBC (¹⁵ N - ¹ H correlations)
Thz(1)-N			315.1		7.32
Thz(1)-C2	164.0			8.61, 7.87	
Thz(1)-C4	149.6			8.61	
Thz(1)-C5	126.3	8.61 (1H, s)			
Thz(1)-CO	159.1	· · · · · · · · · · · · · · · · · · ·		8.61, 7.32, 4.20	
Thz(2)-N			286.8		8.23, 5.04
Thz(2)-C2	163.2			8.23	
Thz(2)-C4	145.7			8.23	
Thz(2)-C5	125.5	8.23 (1H, s)			
Thz(2)-CO	160.5			8.56, 8.23, 5.66	
$\frac{\text{Thz}(3)-\text{N}}{\text{Thz}(3)-\text{O}}$			311.2		5.66
$\frac{\text{Thz}(3)-\text{C2}}{\text{Th}}$	167.4			8.49, 5.66, 3.99	
Thz(3)-C4	148.8			8.49	
Thz(3)-C5	125.6	8.49 (1H, s)		0.40.7.0(.5.70	
Thz(3)-CO	160.3		010.1	8.49, 7.86, 5.70	7.04
$\frac{1 \text{ hz}(4) - \text{N}}{\text{Th}}$	1(0.1		318.1	7.04 5.70 5.10 4.40	/.84
1 nz(4)-C2	108.1		-+	7.84, 3.70, 3.19, 4.49	
$\frac{1 \text{ nz}(4) - C4}{\text{Thg}(4) - C5}$	134.0	7.94 (111 -)		5.70	
1 IIZ(4) - C 3	119.4	/.84 (1H, S)	200 0	3.70	10.03
$\frac{111Z(3)-1N}{Tha(5)}$	167.0	+	298.8	8 52 7 87	10.03
$\frac{\ln z(5) - C2}{\ln z(5) - C4}$	167.0	<u> </u>		8.52, 7.87	
$\frac{112(3)-C4}{Tba(5)}$	149.7	9.52 (11L a)		10.05, 8.32, 0.34w, 3.72w	
$\frac{\text{Thz}(5)-C5}{\text{Thz}(5)-C0}$	127.2	0.32 (IH, S)		10.02.8.52	
Dur N	138.0		211.2	10.03, 8.32	7 87 7 84
Pur C2	125.2		- 511.2	9 52 7 87	1.07, 7.04
Pyr-C2	151.0			7.87	
Pyr-C4	127.1	7.87 (1H s)		7.87	
Pvr-C5	130.0	7.07 (111, 5)		8.61	
Pyr-C6	142.5			7 87 7 84	
Thr-CO	167.7			9.07, 7.32, 4.20, 2.42	
Thr-NH		7.32 (1H, m)	110.7		4.20
Thr-C2	55.5	4.20 (1H, m)		7.32, 5.04, 1.13	
Thr-C3	65.2	2.42(1H, m)		5.04, 4.20, 1.13	
Thr-C3-OH		5.04 (1H, m)			
Thr-C4	17.9	1.13 (3H, s br)		4.20	
Dht-NH		9.07 (1H, s)	119.4		
Dht-C2	109.7			9.07, 8.23, 1.96	
Dht-C3	161.6			9.07, 3.87, 1.96	
Dht-C4	13.1	$1.96 (3H, s)^{+}$		9.07	
Dht-OMe	56.2	3.87 (3H, s)			
Glu-NH		8.56 (1H, d, (8.3))	110.5		5.66, 3.99
Glu-C2	50.2	5.66 (1H, d, (8.8))		8.56, 8.49, 4.27	
Glu-C3	79.3	3.99 (1H, d, 9.5))		8.56, 5.66, 4.27, 4.10	
Glu-C4	70.6	4.27 (1H, d, 9.7))		4.91, 3.99	
Glu-CO	171.8			5.97, 4.27, 3.99	
Sug-C1	95.1	4.91 (1H, d, 4.4))		4.27, 3.74, 1.92, 1.77	
Sug-C2	40.0	1.77 (1H, d, 14.1))		1.40	
		1.92 (1H, m)			
Sug-C3	67.5			4.91, 3.74, 2.08, 1.92, 1.77, 1.40	
Sug-C3-Me	30.6	1.40 (3H, s)		2.08, 1.92, 1.77	
Sug-C4	68.4	2.08 (1H, s br)	160	2.49, 1.40, 0.55	2.74
Sug-C4-NMe ₂	44.4	2.49 (6H, s)	16.9	2.08	3./4
Sug-C5	66.0	<u>3.74 (1H, m)</u>		0.55	
Sug-Co	18.0	U.55 (3H, d, 6.5))	100.0	3./4	10.71.7.0
Indole-N-OH	1050	10./1 (1H, s br)	177.9	4.72.4.10	10./1, /.09
Indole-C2	126.3			4./3, 4.10	
Indole-C3	111.2			4./3, 4.10	
Indole-C3a	119.8	4 10 (111 1 10 5)		/.09, /.14, 5.9/, 5.01, 4.73, 4.10	
indole-C3b	64.5	4.10 (1H, d, 10.5))		3.99	
		1 4.73 (1H, d, 10.5))			

Desition	130	111	15NI	UMPC (¹³ C ¹ U correlations)	HMRC (¹⁵ N ¹ H correlations)
rosition	Cppm	(mult. <i>I</i> (Hz))	npm	HMBC (C - H correlations)	IIMBC (Nº II correlations)
Indole-C4	128.1	(7.69, 7.32, 5.97, 5.01	
Indole-C4a	67.5	5.01 (1H, d, 12.6))	1	7.14	
		5.97 (1H, d, 12.2))			
Indole-C5	123.1	7.14 (1H, d, 7.0))		7.69, 7.32, 5.97, 5.01	
Indole-C6	124.0	7.32 (1H, m)		7.14	
Indole-C7	112.7	7.69 (1H, d, 8.4)		7.14, 5.97w	
Indole-C7a	135.0			7.69, 7.32, 7.14, 5.97w, 5.01w	
Indole-CO	161.1			5.19, 4.49	
Ser-NH		7.86 (1H, m)	110.6		5.70, 4.49
Ser-C2	49.8	5.70 (1H, m)		7.84, 5.19, 4.49	
Ser-C3	63.3	4.49 (1H, d, 11.0))		7.84	
		5.19 (1H, m)			
Deala-NH ₂		7.58 (1H, s br)	99.7		
		8.04 (1H, s br)			
Deala-CO	165.2			10.03, 8.04, 7.58, 6.34, 5.72	
Deala-C2	134.5			10.03, 7.58, 6.34, 5.72	
Deala-C3	103.7	5.72 (1H, s)		10.03	
		6.34 (1H, s)			
Deala-NH		10.03 (1H, s)	123.5		6.34, 5.72

Table I. (Continued

⁺ Irradiation of Dht-C4 (δ 1.96) by selective 1D NOESY enhanced the NH (δ 9.07) and OCH₃ (δ 3.87) signals, indicating the *E* substitution pattern for the Dht residue.

* Possible H-bond coupling.

w=weak coupling.

 $---- HMBC {}^{13}C - {}^{1}H \text{ correlations}$ $----- HMBC {}^{15}N - {}^{1}H \text{ correlations}$

in turn show long-range heteronuclear correlations with $\delta_{\rm C}$ 134.5 (Deala-C2), $\delta_{\rm C}$ 165.2 (Deala CO) and $\delta_{\rm N}$ 123.5 (Deala *N*-H), and with the outer thiazole ring, $\delta_{\rm C}$ 149.7 [Thz(5)-C4]. The primary amide protons ($\delta_{\rm H}$ 7.58, 8.04) show couplings with $\delta_{\rm C}$ 134.5 (Deala-C2), $\delta_{\rm C}$ 165.2 (Deala CO), as indicated in Fig. 2. The observed ¹⁵N chemical shifts, δ 99.7 (Deala-NH₂) and δ 123.5 (Deala-NH) are in excellent agreement with published data for nosiheptide and sulfomycin-I^{9,10}.

Ester Linkage to N-Hydroxyindole Moiety

A significant difference between nocathiacin I (1) and

glycothiohexide- α (4) was the presence of a downfield methylene carbon (δ 63.3) (nocathiacin I) in place of a δ 30.1 methylene resonance (glycothiohexide- α)⁸⁾. These methylene protons (δ 4.49, 5.19) show long-range correlations to δ 49.8 (Ser-C2), δ 168.1 [Thz(4)-C2] and δ 161.1 (Indole-CO). Consideration of the molecular formula (*i.e.* oxygen, sulfur count) also supports the presence of an ester linkage in nocathiacin I, compared to a thioester linkage in glycothiohexide- α . Finally, we are left with one oxygen atom to account for the molecular formula. Accordingly, an OH group was assigned to the indole nitrogen, such as found in another nosiheptide-like thiazolyl peptide S-54832¹¹). This assignment was supported by ¹⁵N- Fig. 3a. Indole substructure of nocathiacin I(1).

Fig. 3b. Indole substructure of nocathiacin II (2).

Fig. 4. Nocathiacin I (1): possible MSⁿ fragmentation displaying proposed core.

¹H HMBC data, where the *N*-hydroxyindole nitrogen (δ 177.9) showed a 2-bond coupling with a broad OH signal (δ 10.71), and a 3-bond coupling with indole-H7 (δ 7.69) (Fig. 3a).

Additional structural confirmation for nocathiacin I (1) was provided from ion-trap mass spectrometry, electrospray ionization, using MS and MSⁿ measurements. Under

typical MS/MS conditions on triple quadrupole instruments, facile loss of 171 daltons (*i.e.* amino sugar moiety), resulting in an ion at m/z 1266 (aglycone) was observed. Additional fragmentation ions at m/z 1248, 1204, 1186, 991 and a proposed core ion at m/z 788 (Fig. 4) were obtained through multi-stage MSⁿ experiments utilizing various precursor ions (Table 4).

Bacition	13C norm	1 U nom	15N nnm
rosition	Сррт	(mult <i>I</i> (Hz))	is ppm
Thz(1)-N		(mun, j (112))	313.8
Thz(1)-C2	164 1		
$\frac{\text{Thz}(1) \cdot C2}{\text{Thz}(1) \cdot C4}$	150.1		
Thz(1)-C5	126.2	8.62 (1H s)	
Thz(1)-CO	158.2	0.02 (111, 3)	
$Th_{Z}(1) = CO$	130.2		288 7
$\frac{1}{2} \frac{1}{2} \frac{1}$	163.0		
$\frac{Thz(2)-C2}{Thz(2)-C4}$	145.0	<u> </u>	
$\frac{\operatorname{Th}_{Z}(2)-C+}{\operatorname{Th}_{Z}(2)-C+}$	125.3	8 22 (1H s)	
$\frac{\operatorname{Th}_{\mathbf{Z}}(2)-\operatorname{CO}}{\operatorname{Th}_{\mathbf{Z}}(2)-\operatorname{CO}}$	160.6	0.22 (111, 3)	
$\frac{\text{Th}_{2}(2)-\text{CO}}{\text{Th}_{2}(3)}$	100.0	<u> </u>	311.0
$\frac{112(3)-11}{112(2)}$	167.1		511.9
$\frac{\text{Thz}(3) - C2}{\text{Thz}(2) - C4}$	148.0		
$\frac{\operatorname{Thz}(3) \cdot \operatorname{C4}}{\operatorname{Thz}(2) \cdot \operatorname{C5}}$	140.9	8 50 (1H c)	
$\frac{112(3) \cdot C3}{Tha(3) \cdot C0}$	123.0	0.50 (111, 5)	
$\frac{\text{Thz}(3)-\text{CO}}{\text{Thz}(4)}$	101.0		210.0
$\frac{1 \text{ nz}(4) - \text{N}}{\text{Th}_{2}(4) - \text{C}_{2}}$	167.2		518.8
Thz(4)-C2	107.2	····	
Thz(4)-C4	154.2	7.00 (111)	
<u>Thz(4)-C5</u>	119.8	7.80 (1H, S)	
Thz(5)-N	1444		299.3
Thz(5)-C2	166.6		
Thz(5)-C4	149.7		
Thz(5)-C5	127.3	8.54 (1H, s)	
Thz(5)-CO	158.6		
Pyr-C2	135.5		
Pyr-C3	152.1		
Pyr-C4	126.8	7.94 (1H, s)	
Pyr-C5	129.8		
Pyr-C6	142.0		
Thr-CO	168.1		
Thr-NH		7.06 (1H, d, 7.6)	108.7
Thr-C2	55.0	4.22 (1H, m)	
Thr-C3	66.0	2.12 (1H, m)	
Thr-C3-OH		4.86 (1H, d br)	
Thr-C4	17.9	1.05 (3H, d br)	
Dht-NH		9.10 (1H, s)	119.9
Dht-C2	109.8		
Dht-C3	161.3		
Dht-C4	13.0	1.99 (3H, s)	
Dht-OMe	56.1	3.89 (3H, s)	

Table 2. Nocathiacin II (2): NMR data (500 MHz, DMSO- d_6).

Position	¹³ C ppm	H ppm	"N ppm
		(mun, J(nz))	110.9
Glu-INH	50.6	6.39 (111, d, 6.3)	110.8
Glu-C2	50.0	5.68 (1H, d, 8.2)	
Glu-C3	/9.0	4.02 (1H, d, 9.1)	
Glu-C4	/0./	4.35 (1H, d, 9.5)	
Glu-CO	171.9		
Sug-Cl	95.0	4.93 (1H, m)	
Sug-C2	40.4	1.79 (1H, d, 14.1)	
		1.94 (1H, m)	
Sug-C3	67.5		
Sug-C3-Me	30.6	1.41 (3H, s)	
Sug-C4	68.4	2.08 (1h, s br)	
Sug-C4-NMe ₂	44.4	2.51 (6H, s)	17.2
Sug-C5	65.8	3.74 (1H, m)	
Sug-C6	17.9	0.55 (3H, d, 6.0)	
Indole-NH		11.37 (1H, s br)	137.4
Indole-C2	126.6		
Indole-C3	116.2		
Indole-C3a	124.1		
Indole-C3b	64.0	4.10 (1H, d, 9.8)	
		4.93 (1H, m)	
Indole-C4	127.9		
Indole-C4a	67.6	5.00 (1H, d, 12.3)	
		6.02 (1H, d, 12.0)	
Indole-C5	122.8	7.12 (1H, d, 6.8)	
Indole-C6	123.7	7.25 (1H, t, 7.5)	
Indole-C7	115.8	7.56 (1H, d, 8.3)	
Indole-C7a	136.8		
Indole-CO	161.6		
Ser-NH		7.69 (1H, d, 10.7)	110.0
Ser-C2	51.1	5.77 (1H, m)	
Ser-C3	62.5	4.69 (1H. d. 11.0)	
		5.24 (1H, m)	
Deala-NH ₂		7.61 (1H, s br)	99.8
-		8.06 (1H, s br)	
Deala-CO	165.2	· · · · · · · · · · · · · · · · · · ·	
Deala-C2	134.5		
Deala-C3	103.7	5.74 (1H, s)	
		6.37 (1H, s)	
Deala-NH	1	10.04 (1H, s)	123.4

Nocathiacin II (2)

The second, major component of the nocathiacin antibiotic complex was also obtained as a yellow amorphous solid. The measured mass of **2**, again determined by HR-ESIMS ($[M+H]^+$ at m/z 1421.2964) was consistent with the formula $C_{61}H_{60}N_{14}O_{17}S_5$. Additional confirmation was provided by elemental analysis. The molecular formula for **2** is thus consistent with an analog having one less oxygen than that of **1**. The UV spectrum, λ_{max} (MeOH) 220, 295, 364 nm (log ε 5.01, 4.67, 4.36) essentially overlapped that of **1**. The ¹H and ¹³C spectra of nocathiacin II (**2**) were also similar to those of **1**. The NMR chemical shift assignments **2** were based on 2D NMR (COSY, HMQC and HMBC data) (Table 2). The indole nitrogen in nocathiacin II (2) is unsubstituted (*i.e.* NH group). This is supported by ¹⁵N-¹H 2D NMR data, where the indole nitrogen resonance (δ 137.4) showed a 3-bond coupling with indole-H7 (δ 7.56), and a 1-bond coupling with a broad NH singlet (δ 11.37) (Fig. 3b). In further support of this assignment, the ¹⁵N chemical shift reported for the indole nitrogen (NH) in nosiheptide is δ 137.3 (referenced to NH₄Cl)⁹). In the MSⁿ spectra, facile loss of 171 daltons (amino sugar) yielded a prominent aglycone ion at *m*/*z* 1250. MSⁿ fragmentation of the ion at *m*/*z* 1250 generated major substructure ions at *m*/*z* 1232, 1206, 1188, 1171, 1156, 1139, 1060, 975, and a proposed

Position	¹³ C ppm	[•] H ppm
		(mult, <i>J</i> (Hz))
Thz(1)-C2	164.4	
Thz(1)-C4	149.6	
Thz(1)-C5	126.4	8.63 (1H, s)
Thz(1)-CO	159.3	
Thz(2)-C2	163.0	
Thz(2)-C4	146.0	
Thz(2)-C5	125.3	8.20 (1H, s)
Thz(2)-CO	160.4	
Thz(3)-C2	167.8	
Thz(3)-C4	148.8	
Thz(3)-C5	126.3	8.51 (1H, s)
Thz(3)-CO	160.4	
Thz(4)-C2	168.1	
Thz(4)-C4	154.7	
Thz(4)-C5	119.5	7.83 (1H, s)
Thz(5)-C2	166.6	
Thz(5)-C4	149.6	
Thz(5)-C5	126.4	8.52 (1H, s)
Thz(5)-CO	158.8	
Pyr-C2	135.7	
Pyr-C3	152.9	
Pyr-C4	127.1	7.83 (1H, s)
Pyr-C5	129.9	
Pyr-C6	141.6	
Thr-CO	167.8	
Thr-NH		7.38 (1H, d, 7.2)
Thr-C2	55.7	4.16 (1H, m)
Thr-C3	65.3	2.55 (1H, m)
Thr-C4	18.0	1.17 (3H, s br)
Dht-NH		8.95 (1H, s)
Dht-C2	109.8	
Dht-C3	161.2	

Table 3. Nocathiacin III (3): NMR data (500 MHz, DMSO- d_6).

Position	¹³ C ppm	'H ppm
		(mult, <i>J</i> (Hz))
Dht-C4	13.2	1.98 (3H, s)
Dht-OMe	56.2	3.87 (3H, s)
Glu-NH		8.38 (1H, d, 8.8)
Glu-C2	49.5	5.90 (1H, m)
Glu-C3	81.4	3.74 (1H, d, 9.5)
Glu-C4	67.9	4.02 (1H, d, 9.2)
Glu-CO	174.5	
Indole-C2	126.4	
Indole-C3	111.3	
Indole-C3a	119.7	
Indole-C3b	64.5	4.12 (1H, d, 10.3)
		4.70 (1H, d, 10.3)
Indole-C4	128.6	
Indole-C4a	67.3	5.02 (1H, d, 12.5)
		5.90 (1H, m)
Indole-C5	123.1	7.17 (1H, d, 7.0)
Indole-C6	124.2	7.33 (1H, t, 7.7)
Indole-C7	112.5	7.69 (1H, d, 8.4)
Indole-C7a	135.0	
Indole-CO	168.1	
Ser-NH		7.92 (1H, d, 10.9)
Ser-C2	49.7	5.75 (1H, m)
Ser-C3	63.5	4.52 (1H, d, 11.1)
		5.23 (1H, m)
Deala-NH ₂		7.63 (1H, s br)
		8.09 (1H, s br)
Deala-CO	165.3	
Deala-C2	134.5	
Deala-C3	103.7	5.75 (1H, s)
		6.39 (1H, s)
Deala-NH		10.06 (1H, s)

common core ion at m/z 788, in agreement with a deshydroxy analog of 1 (Table 4). Additionally, nocathiacin II (2) prepared semi-synthetically from nocathiacin I (1) was identical in terms of LC/MS and NMR spectral data to that of the natural product¹²).

Nocathiacin III (Aglycone) (3)

A minor component of the nocathiacin antibiotic complex was again obtained as yellow amorphous solid. The measured mass of **3**, determined by HR-ESIMS $([M+H]^+$ at m/z 1266.1615) was consistent with the formula $C_{52}H_{43}N_{13}O_{16}S_5$, *i.e.* the aglycone of **1**. In support of this assignment, the 2D NMR data for nocathiacin III (**3**) revealed the same core structural elements present in **1**. Furthermore, the amino sugar methyl proton NMR signals $[\delta 1.40 (3H, s), 2.49 (6H, s), 0.55 (3H, d)]$ observed in **1** were notably absent from the NMR spectrum of **3**. In addition, the UV spectrum, λ_{max} (MeOH) 224, 290, 364 nm (log ε 4.85, 4.52, 4.11) essentially overlapped that of **1**. MSⁿ fragmentation of **3** yielded ions at m/z 1248, 1222, 1204, 1186, 991, and proposed core ion at m/z 788, as observed for **1** (Table 4). The ¹H and ¹³C chemical shift assignments for nocathiacin III (**3**) are summarized in Table 3.

Discussion

The structures of nocathiacins I~III (Fig. 1) were determined by spectroscopic (2D-NMR, MSⁿ) methods, and share structural similarities to glycothiohexide- α (4). In addition, nocathiacin I contains structural elements from nosiheptide (dehydroalanine side chain) and S-54832 (ester linkage, *N*-hydroxyindole moiety). During the course of our investigation and early development of the nocathiacin antibiotics, a new antibiotic MJ347-81F4-A from *Amycolatopsis* sp. was disclosed by T. OTANI *et al.* The general structure of the major analog nocathiacin I is

Table 4. Summary of MS^n data for nocathiacins I \sim III.

Nocathiacin I (1, MW 1436) MSⁿ (major ions)

 MS¹
 m/z 1437 [M+H]⁺

 MS²
 m/z 1437 \rightarrow m/z 1266 [M+H-171 (amino sugar)](Aglycone)

 MS³
 m/z 1437 \rightarrow m/z 1266 \rightarrow m/z 1248, 1204, 1186

 MS⁴
 m/z 1437 \rightarrow m/z 1266 \rightarrow m/z 1248 \rightarrow m/z 1204, 1186

 MS⁴
 m/z 1437 \rightarrow m/z 1266 \rightarrow m/z 1204 \rightarrow m/z 1204, 1186

Nocathiacin II (2, MW 1420) MSⁿ (major ions)

 $MS^1 m/z 1421 [M+H]^+$

- MS^2 m/z 1421 \rightarrow m/z 1250 [M+H-171 (amino sugar)](Aglycone)
- $MS^{3} \quad m/z \ 1421 \rightarrow m/z \ 1250 \rightarrow m/z \ 1232, \ 1206, \ 1188$
- MS^4 $m/z \ 1421 \rightarrow m/z \ 1250 \rightarrow m/z \ 1188 \rightarrow m/z \ 1171, \ 1156, \ 1139, \ 1060, \ 975$
- MS⁵ m/z 1421 → m/z 1250 → m/z 1188 → m/z 1171 → m/z 1153, 1138, 955, 788 (core)

Nocathiacin III (3, MW 1265) MSⁿ (major ions)

- MS¹ *m/z* 1266 [M+H]⁺
- $MS^2 m/z \ 1266 \rightarrow m/z \ 1248, \ 1222, \ 1204, \ 1186$
- MS^3 $m/z \ 1266 \rightarrow m/z \ 1204 \rightarrow m/z \ 1186, \ 1154, \ 991$
- MS^4 $m/z \ 1266 \rightarrow m/z \ 1204 \rightarrow m/z \ 1186 \rightarrow m/z \ 1169, \ 1155, \ 1058, \ 788 \ (core)$

identical to that reported for MJ347-81F4-A¹³⁾. Spectral data and stereochemical details, however, were not reported for the latter. Two new analogs produced in the Nocardia sp. (ATCC 202099) fermentation are the indole-NH (i.e. des-OH) analog (2), and the aglycone (3) of nocathiacin I (1). The solution conformation and absolute configuration of 1 were subsequently determined by NMR spectroscopy and chiral capillary electrophoresis studies¹⁴⁾. The absolute configurations for co-occurring analogs 2 and 3 were not independently determined. Given, however, that the CD curves for nocathiacins I~III are very similar, it is assumed that 2 and 3 (i.e. aglycone portion) have the same absolute configuration as 1. The nocathiacins represent a new group of antibiotics with both highly potent in vitro and in vivo activities. A critical goal for the further development of this chemotype lies in the preparation of potent, stable, aqueous soluble analogs. Further studies describing methods to improve the pharmaceutical properties of these natural products will be reported elsewhere.

Experimental

Analytical Instrumentation

NMR chemical shift assignments of nocathiacins I~III were obtained on a Bruker DRX 500 MHz spectrometer in DMSO- d_6 at 28°C, operating at 500.13 MHz for proton, 125.76 MHz for carbon and 50.69 MHz for nitrogen, respectively. The instrument was equipped with a 5-mm TXI cryo probe. Proton and carbon chemical shifts are reported in ppm relative to DMSO at $\delta_{\rm H}$ 2.49 and $\delta_{\rm C}$ 39.6. Nitrogen chemical shifts were observed indirectly from ¹H-¹⁵N HMQC and HMBC experiments, reported relative to NH₄Cl, δ 27.3 (referenced to liquid ammonia¹⁰). For the NMR data presented in Tables 1~3, the numbering system for glycothiohexide- α was adopted⁸).

Low-resolution MS measurements were performed with a Finnigan SSQ7000 single quadrupole mass spectrometer, using the positive electrospray ionization mode. MS/MS measurements were conducted in the positive electrospray VOL. 56 NO. 3

ionization mode with a Finnigan TSQ7000 triple quadrupole mass spectrometer using argon collision gas or a Finnigan LCQ ion-trap mass spectrometer. Highresolution MS data were determined with a Finnigan MAT900 magnetic sector mass spectrometer, positive electrospray ionization mode, polypropylene glycol reference. The UV spectra were obtained using a Hewlett-Packard 8452A diode array spectrophotometer. IR measurements were taken on a Perkin Elmer 2000 Fourier Transform spectrometer. CD data were recorded with a Jasco J-720 spectropolarimeter. Fluorescence data were obtained using a Spex Fluorolog spectrofluorimeter. HPLC (C18) conditions: APEX 5 μ ODS column, 0.46 i.d.×15 cm (Jones Chrom. Inc.). The mobile phase¹⁵⁾ consisted of 0.01 M potassium phosphate buffer pH 3.5 (solvent A) and acetonitrile (solvent B) with the following 32-minute step gradient: 15% B (initial 3 minutes), 15 to 40% B (3 minutes), 40% B (6 minutes), 40 to 55% B (7 minutes), 55 to 85% B (3 minutes), 85% B (6 minutes), and 85 to 15% B (4 minutes). The flow rate was 1.2 ml/minute; UV detection (254 nm).

The pKa measurements were determined using a pION Model GLpKa analyzer in the pH range $3\sim11$. Where the ionizable groups are part of a UV chromophore, a spectrophotometric pH titration was used to determine the pKa's. Additionally, potentiometric pH titrations were used to determine the pKa's. Three or more different percentages of methanol in water were used as solvent in which the pKa was measured; pKa vs. percent methanol was plotted and the pKa at 0% methanol was extrapolated. The spectrophotometric and potentiometric pKa values agreed in all cases to within 0.5 pKa unit or less, and the values reported are averages of the results obtained by the two methods.

Nocathiacin I (1)

C₆₁H₆₀N₁₄O₁₈S₅; HR-ESIMS ([M+H]⁺ m/z 1437.2850, calcd 1437.2892); ESI-MSⁿ ions: see Table 4; Elem. *Anal.*: C 49.35, H 4.31, N 13.07, S 10.68; KF moisture 2.65; Calcd for C₆₁H₆₀N₁₄O₁₈S₅+2.1(H₂O): C 49.66, H 4.39, N 13.29, S 10.87; UV λ_{max} (MeOH) 222, 290, 364 nm (log ε 4.89, 4.52, 4.17); IR v_{max} (KBr): 3392, 3108, 2932, 1740, 1721, 1694, 1670, 1640, 1533, 1478, 1420, 1384, 1320, 1250, 1207, 1128, 1091, 1037, 1014, 751 cm⁻¹; CD λ nm ($\Delta \varepsilon$) (MeOH) 212 (+34.1), 239 (-50.5), 267 (+20.8), 307 (-8.7), 364 (+5.5); HPLC (Rt) 25.6 minutes; pKa data: 5.8, 8.3, 8.9; Fluorescence λ_{max} (me) (MeOH-H₂O 1:1) 511 nm @ λ_{ex} 350 nm; ¹H-, ¹³C-, ¹⁵N-NMR data (DMSOd₆): see Table 1.

Nocathiacin II (2)

C₆₁H₆₀N₁₄O₁₇S₅; HR-ESIMS ([M+H]⁺ *m/z* 1421.2964, calcd 1421.2943); ESI-MSⁿ ions: see Table 4; Elem. *Anal.*: C 49.24, H 4.54, N 13.11, S 10.43; KF moisture 3.85; Calcd for C₆₁H₆₀N₁₄O₁₇S₅+3.1(H₂O): C 49.59, H 4.52, N 13.27, S 10.85; UV λ_{max} (MeOH) 220, 295, 364 nm (log ε 5.01, 4.67, 4.36); IR v_{max} (KBr): 3387, 1725, 1656, 1534, 1478, 1423, 1318, 1249, 1192, 1087, 1014, 886, 793, 751; CD λ nm ($\Delta \varepsilon$) (MeOH) 211 (+41.5), 235 (-56.1), 258 (+21.0), 277sh (+13.4), 307 (-10.0), 364 (+5.6); HPLC (Rt) 21.1 minutes; ¹H-, ¹³C-, ¹⁵N-NMR data (DMSO-*d*₆): see Table 2.

Nocathiacin III (3)

 $C_{52}H_{43}N_{13}O_{16}S_5$; HR-ESIMS ([M+H]⁺ m/z 1266.1615, calcd 1266.1628); ESI-MSⁿ ions: see Table 4; UV λ_{max} (MeOH) 224, 290, 364 nm (log ε 4.85, 4.52, 4.11); IR v_{max} (KBr): 3382, 1720, 1667, 1643 sh, 1534, 1510, 1477, 1420, 1250, 1207, 1126, 1015, 750; CD λ nm ($\Delta \varepsilon$) (MeOH) 212 (+38.7), 238 (-47.6), 266 (+21.2), 306 (-11.4), 362 (+5.1); HPLC (Rt) 19.3 minutes; pKa data: 6.2, 8.4; Fluorescence λ_{max} (em) (MeOH-H₂O 1:1) 519 nm @ λ_{ex} 350 nm; ¹H-, ¹³C-NMR data (DMSO- d_6): see Table 3.

Acknowledgements

The authors thank W. L. PARKER, M. LIU, R. KO, D. CAZZULINO, P. CINO and associates (BMS-New Brunswick) for fermentation scale-up support, M. D'ANDREA for the pKa data, and D. R. SCHROEDER, Y. Z. SHU, D. VYAS, S. FORENZA, T. P. CONNOLLY, and Y. UEDA for helpful discussions.

References

- LEET, J. E.; H. A. AX, D. R. GUSTAVSON, D. M. BROWN, L. TURNER, K. BROWN, W. LI & K. S. LAM (Bristol-Myers Squibb Company): Nocathiacin Antibiotics. U.S. 6,218,398 B1, April 17, 2001
- LI, W.; J. E. LEET, H. A. AX, D. R. GUSTAVSON, D. M. BROWN, L. TURNER, K. BROWN, J. CLARK, H. YANG, J. FUNG-TOMC & K. S. LAM: Nocathiacins, new Thiazolyl peptide antibiotics from *Nocardia* sp. I. Taxonomy, Fermentation, and Biological Activities. J Antibiotics 56: 226~231, 2003
- 3) Ko, R.; P. CINO & D. CAZZULINO: Unpublished results
- BERDY, J.: Thiazolyl peptides. Handbook of Antibiotic Compounds Vol. IV, Part I. Ed., J. BERDY et al., pp. 389~417, CRC Press Inc., 1980
- PASCARD, C.; A. DUCRUIX, J. LUNEL & T. PRANGE: Highly modified cysteine-containing antibiotics. Chemical structure and configuration of nosiheptide. J. Am. Chem. Soc. 99: 6418~6423, 1977
- 6) STEINBERG, D. A.; V. S. BERNAN, D. A. MONTENEGRO, D. R. ABBANAT, C. J. PEARCE, J. D. KORSHALLA, N. V. JACOBUS, P. J. PETERSEN, M. J. MROCZENSKI-WILDEY, W.

M. MAIESE & M. GREENSTEIN: Glycothiohexides, novel antibiotics produced by "Sebekia" sp., LL-14E605. I. Taxonomy, fermentation, and biological evaluation. J. Antibiotics $47:887 \sim 893,1994$

- NORTHCOTE, P. T.; D. WILLIAMS, J. K. MANNING, D. B. BORDERS, W. M. MAIESE & M. D. LEE: Glycothiohexide α, a novel antibiotic produced by "Sebekia" sp., LL-14E605. II. Isolation and physical-chemical characterization. J. Antibiotics 47: 894~900, 1994
- NORTHCOTE, P. T.; M. SIEGEL, D. B. BORDERS & M. D. LEE: Glycothiohexide α, a novel antibiotic produced by "Sebekia" sp., LL-14E605. III. Structural elucidation. J. Antibiotics 47: 901~908, 1994
- MOCEK, U.; A. R. KNAGGS, R. TSUCHIYA, T. NGUYEN, J. M. BEALE & H. G. FLOSS: Biosynthesis of the modified peptide antibiotic nosiheptide in *Streptomyces actuosus*. J. Am. Chem. Soc. 115: 7557~7568, 1993
- 10) MARTIN, G. E.; F. W. CROW, B. D. KALUZNY, J. G. MARR, G. D. FATE & T. J. GILBERTSON: Partial assignment of the ¹⁵N NMR spectrum of sulfomycin-I at natural

abundance. Magn. Reson. Chem. 36: 635~644, 1998

- KELLER-JUSLEN, C.; M. KUHN & H. D. KING (Sandoz Ltd.): Antibiotics, Pharmaceutical Compositions and Methods of Use. U.S. 4,478,831, October 23, 1984
- 12) CONNOLLY, T. P. et al.: Personal communication
- 13) SASAKI, T.; T. OTANI, H. MATSUMOTO, N. UNEMI, M. HAMADA, T. TAKEUCHI & M. HORI: MJ347-81F4 A & B, novel antibiotics from *Amycolatopsis* sp.: Taxonomic characteristics, fermentation, and antimicrobial activity. J. Antibiotics 51: 715~721, 1998
- 14) CONSTANTINE, K. L.; L. MUELLER, S. HUANG, S. ABID, K. S. LAM, W. LI & J. E. LEET: Conformation and absolute configuration of nocathiacin I determined by NMR spectroscopy and chiral capillary electrophoresis. J. Am. Chem. Soc. 124: 7284~7285, 2002
- 15) HOOK, D. J.; C. F. MORE, J. J. YACOBUCCI, G. DUBAY & S. O'CONNOR: Integrated biological-physicochemical system for the identification of antitumor compounds in fermentation broths. J. Chromatogr. 385: 99~108, 1987